Trevor P Creamer

Bio / Education: 

University of Kentucky
Associate Director, Center for Structural Biology.
Professor of Molecular and Cellular Biochemistry.
Director, REU Summer Program in Biochemistry, Department of Molecular and Cellular Biochemistry.

Education
Research Associate
Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine.
Postdoctoral Fellow
Department of Biochemistry and Molecular Biophysics, Washington University at St. Louis.
Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill.
Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, The Pennsylvania State University.

Ph.D. (Physical Chemistry), University of Western Australia.
B.Sc. with 1st Class Honours (Physical and Inorganic Chemistry), University of Western Australia.

Research Description: 

Creamer Lab Research

After many years of working on protein folding and related issues, the Creamer lab is now applying its expertise to the characterization of the function and conformational properties of intrinsically disordered regions (IDRs) within proteins. IDRs are regions of protein sequence that do not appear to adopt a well-defined structure. We have chosen calmodulin (CaM) and its targets as model systems to study the function of IDRs. Our current studies are focused on calcineurin (CaN), a Ser/Thr phosphatase that is activated by CaM binding. CaN plays essential roles in memory development and retention, cardiac growth, and immune system activation. It has been implicated in numerous disorders including Down syndrome, cardiac hypertrophy, and autoimmune disorders. The regulatory domain of CaN, which is a CaM substrate, is an IDR. We are investigating the CaM-CaN interaction and how this regulates CaN function. We are extending this work to include other regulators of CaN including Rcan1, a protein that plays a role in Down syndrome.

PubMed Publications: 

  • Dunlap, T.B.;Guo, H.F.;Cook, E.C.;Holbrook, E.;Rumi-Masante, J.;Lester, T.E.;Colbert, C.L.;Vander Kooi, C.W.;Creamer, T.P. "Stoichiometry of the calcineurin regulatory domain-calmodulin complex." Biochemistry 53, 36 (2014): 5779-90. [PubMed Link] | [ Full text ]
  • Juvvadi, P.R.;Gehrke, C.;Fortwendel, J.R.;Lamoth, F.;Soderblom, E.J.;Cook, E.C.;Hast, M.A.;Asfaw, Y.G.;Moseley, M.A.;Creamer, T.P.;Steinbach, W.J. "Phosphorylation of Calcineurin at a novel serine-proline rich region orchestrates hyphal growth and virulence in Aspergillus fumigatus." PLoS pathogens 9, 8 (2014): e1003564. [PubMed Link] | [ Full text ]
  • Dunlap, T.B.;Cook, E.C.;Rumi-Masante, J.;Arvin, H.G.;Lester, T.E.;Creamer, T.P. "The distal helix in the regulatory domain of calcineurin is important for domain stability and enzyme function." Biochemistry 52, 48 (2013): 8643-51. [PubMed Link] | [ Full text ]
  • Shen, M.;Bellaousov, S.;Hiller, M.;Grange, P.;Creamer, T.P.;Malina, O.;Sperling, R.;Mathews, D.H.;Stoilov, P.;Stamm, S. "Pyrvinium pamoate changes alternative splicing of the serotonin receptor 2C by influencing its RNA structure." Nucleic acids research 41, 6 (2013): 3819-32. [PubMed Link] | [ Full text ]
  • Dunlap, T.B.;Kirk, J.M.;Pena, E.A.;Yoder, M.S.;Creamer, T.P. "Thermodynamics of binding by calmodulin correlates with target peptide α-helical propensity." Proteins 81, 4 (2013): 607-12. [PubMed Link] | [ Full text ]
  • Smith, E.C.;Culler, M.R.;Hellman, L.M.;Fried, M.G.;Creamer, T.P.;Dutch, R.E. "Beyond anchoring: the expanding role of the hendra virus fusion protein transmembrane domain in protein folding, stability, and function." Journal of virology 86, 6 (2012): 3003-13. [PubMed Link] | [ Full text ]
  • Rumi-Masante, J.;Rusinga, F.I.;Lester, T.E.;Dunlap, T.B.;Williams, T.D.;Dunker, A.K.;Weis, D.D.;Creamer, T.P. "Structural basis for activation of calcineurin by calmodulin." Journal of molecular biology 415, 2 (2012): 307-17. [PubMed Link] | [ Full text ]
  • Smith, E.C.;Gregory, S.M.;Tamm, L.K.;Creamer, T.P.;Dutch, R.E. "Role of sequence and structure of the Hendra fusion protein fusion peptide in membrane fusion." The Journal of biological chemistry 287, 35 (2012): 30035-48. [PubMed Link] | [ Full text ]
  • Thakur, A.K.;Jayaraman, M.;Mishra, R.;Thakur, M.;Chellgren, V.M.;Byeon, I.J.;Anjum, D.H.;Kodali, R.;Creamer, T.P.;Conway, J.F.;Gronenborn, A.M.;Wetzel, R. "Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism." Nature structural & molecular biology 16, 4 (2009): 380-9. [PubMed Link] | [ Full text ]
  • Firestine, A.M.;Chellgren, V.M.;Rucker, S.J.;Lester, T.E.;Creamer, T.P. "Conformational properties of a peptide model for unfolded alpha-helices." Biochemistry 47, 10 (2008): 3216-24. [PubMed Link] | [ Full text ]
  • Stevenson, B.;Choy, H.A.;Pinne, M.;Rotondi, M.L.;Miller, M.C.;DeMoll, E.;Kraiczy, P.;Cooley, A.E.;Creamer, T.P.;Suchard, M.A.;Brissette, C.A.;Verma, A.;Haake, D.A. "Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement." PloS one 2, 11 (2007): e1188. [PubMed Link] | [ Full text ]
  • Creamer, T.P.;Fetrow, J.S. "Rose is a rose is a rose. Especially if you're a George." Proteins 63, 2 (2006): 268-72. [PubMed Link] | [ Full text ]
  • Barrett, D.G.;Minder, C.M.;Mian, M.U.;Whittington, S.J.;Cooper, W.J.;Fuchs, K.M.;Tripathy, A.;Waters, M.L.;Creamer, T.P.;Pielak, G.J. "Pressure perturbation calorimetry of helical peptides." Proteins 63, 2 (2006): 322-6. [PubMed Link] | [ Full text ]
  • Bhattacharyya, A.;Thakur, A.K.;Chellgren, V.M.;Thiagarajan, G.;Williams, A.D.;Chellgren, B.W.;Creamer, T.P.;Wetzel, R. "Oligoproline effects on polyglutamine conformation and aggregation." Journal of molecular biology 355, 3 (2006): 524-35. [PubMed Link] | [ Full text ]
  • Chellgren, B.W.;Creamer, T.P. "Side-chain entropy effects on protein secondary structure formation." Proteins 62, 2 (2006): 411-20. [PubMed Link] | [ Full text ]
  • Chellgren, B.W.;Miller, A.F.;Creamer, T.P. "Evidence for polyproline II helical structure in short polyglutamine tracts." Journal of molecular biology 361, 2 (2006): 362-71. [PubMed Link] | [ Full text ]
  • Whittington, S.J.;Chellgren, B.W.;Hermann, V.M.;Creamer, T.P. "Urea promotes polyproline II helix formation: implications for protein denatured states." Biochemistry 44, 16 (2005): 6269-75. [PubMed Link] | [ Full text ]
  • Chellgren, B.W.;Creamer, T.P. "Effects of H2O and D2O on polyproline II helical structure." Journal of the American Chemical Society 126, 45 (2004): 14734-5. [PubMed Link] | [ Full text ]
  • Chellgren, B.W.;Creamer, T.P. "Short sequences of non-proline residues can adopt the polyproline II helical conformation." Biochemistry 43, 19 (2004): 5864-9. [PubMed Link] | [ Full text ]
  • Sim, K.L.;Creamer, T.P. "Protein simple sequence conservation." Proteins 54, 4 (2004): 629-38. [PubMed Link] | [ Full text ]
  • Rucker, A.L.;Pager, C.T.;Campbell, M.N.;Qualls, J.E.;Creamer, T.P. "Host-guest scale of left-handed polyproline II helix formation." Proteins 53, 1 (2003): 68-75. [PubMed Link] | [ Full text ]
  • Whittington, S.J.;Creamer, T.P. "Salt bridges do not stabilize polyproline II helices." Biochemistry 42, 49 (2003): 14690-5. [PubMed Link] | [ Full text ]
  • Sim, K.L.;Creamer, T.P. "Abundance and distributions of eukaryote protein simple sequences." Molecular & cellular proteomics : MCP 1, 12 (2002): 983-95. [PubMed Link] | [ Full text ]
  • Rucker, A.L.;Creamer, T.P. "Polyproline II helical structure in protein unfolded states: lysine peptides revisited." Protein science : a publication of the Protein Society 11, 4 (2002): 980-5. [PubMed Link] | [ Full text ]
  • Kelly, M.A.;Chellgren, B.W.;Rucker, A.L.;Troutman, J.M.;Fried, M.G.;Miller, A.F.;Creamer, T.P. "Host-guest study of left-handed polyproline II helix formation." Biochemistry 40, 48 (2001): 14376-83. [PubMed Link] | [ Full text ]
  • Creamer, T.P. "Side-chain conformational entropy in protein unfolded states." Proteins 40, 3 (2000): 443-50. [PubMed Link] | [ Full text ]
  • Stapley, B.J.;Creamer, T.P. "A survey of left-handed polyproline II helices." Protein science : a publication of the Protein Society 8, 3 (1999): 587-95. [PubMed Link] | [ Full text ]
  • Creamer, T.P. "Left-handed polyproline II helix formation is (very) locally driven." Proteins 33, 2 (1998): 218-26. [PubMed Link] | [ Full text ]
  • Creamer, T.P.;Srinivasan, R.;Rose, G.D. "Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility." Biochemistry 36, 10 (1997): 2832-5. [PubMed Link] | [ Full text ]
  • Aurora, R.;Creamer, T.P.;Srinivasan, R.;Rose, G.D. "Local interactions in protein folding: lessons from the alpha-helix." The Journal of biological chemistry 272, 3 (1997): 1413-6. [PubMed Link] | [ Full text ]
  • Wimley, W.C.;Creamer, T.P.;White, S.H. "Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides." Biochemistry 35, 16 (1996): 5109-24. [PubMed Link] | [ Full text ]
  • Wimley, W.C.;Gawrisch, K.;Creamer, T.P.;White, S.H. "Direct measurement of salt-bridge solvation energies using a peptide model system: implications for protein stability." Proceedings of the National Academy of Sciences of the United States of America 93, 7 (1996): 2985-90. [PubMed Link] | [ Full text ]
  • Creamer, T.P.;Srinivasan, R.;Rose, G.D. "Modeling unfolded states of peptides and proteins." Biochemistry 34, 50 (1995): 16245-50. [PubMed Link] |
  • Creamer, T.P.;Rose, G.D. "Alpha-helix-forming propensities in peptides and proteins." Proteins 19, 2 (1994): 85-97. [PubMed Link] |
  • Creamer, T.P.;Rose, G.D. "Side-chain entropy opposes alpha-helix formation but rationalizes experimentally determined helix-forming propensities." Proceedings of the National Academy of Sciences of the United States of America 89, 13 (1992): 5937-41. [PubMed Link] | [ Full text ]
X
Enter your Molecular & Cellular Biochemistry username.
Enter the password that accompanies your username.
Loading